~ 1 min
read
Trigonometrical identities
Trigonometrical identities
Here I show some useful trigonometric identities that are often used in Astronomy and other sciences
Pythagorean identities
sin2x+cos2x=1
tan2x1=sec2x
csc2x=cot2x1
Ratio identities
tanx=cosxsinx
cotx=sinxcosx
Reciprocal identities
cscx=sin(x)1
secx=cos(x)1
cotx=tan(x)1
Opposite angles
sin(−x)=−sin(x)
cos(−x)=cos(x)
tan(−x)=−tan(x)
Works the same for the reciprocal identities.
Complementary angles
sin(90°−x)=cosx
cos(90°−x)=sinx
tan(90°−x)=−cotx
cot(90°−x)=−tanx
Supplementary angles
sin(180°−x)=sinx
cos(180°−x)=−cosx
tan(180°−x)=−tanx
cot(180°−x)=−cotx
Sum and Difference of Angles
sin(α±β)=sinαcosβ±cosαsinβ
cos(α±β)=sinαcosβ∓cosαsinβ
tan(α±β)=1∓tanαtanβtanα±tanβ
Double angles
sin(2x)=2sinxcosx
cos(2x)=cos2x−sin2x
tan(2x)=1−tan2x2tanx
Half angles
sin(2x)=±21−cos(x)
cos(2x)=±21+cos(x)
tan(2x)=sinx1−cosx