~ 1 min read

Trigonometrical identities

Some useful trigonometrical identities

Trigonometrical identities

Here I show some useful trigonometric identities that are often used in Astronomy and other sciences

Pythagorean identities

sin2x+cos2x=1\sin^2 x + \cos^2 x = 1

1tan2x=sec2x\frac{1}{\tan^{2}x} = \sec^{2}x

csc2x=1cot2x\csc^{2}x = \frac{1}{\cot^{2}x}

Ratio identities

tanx=sinxcosx\tan x=\frac{\sin x}{\cos x}

cotx=cosxsinx\cot x=\frac{\cos x}{\sin x}

Reciprocal identities

cscx=1sin(x)\csc x=\frac{1}{\sin(x)}

secx=1cos(x)\sec x=\frac{1}{\cos(x)}

cotx=1tan(x)\cot x=\frac{1}{\tan(x)}

Opposite angles

sin(x)=sin(x)\sin (-x) = -\sin (x)

cos(x)=cos(x)\cos (-x) = \cos (x)

tan(x)=tan(x)\tan (-x) = -\tan (x)

Works the same for the reciprocal identities.

Complementary angles

sin(90°x)=cosx\sin (90°-x) = \cos x

cos(90°x)=sinx\cos (90°-x) = \sin x

tan(90°x)=cotx\tan (90°-x) = -\cot x

cot(90°x)=tanx\cot (90°-x) = -\tan x

Supplementary angles

sin(180°x)=sinx\sin (180°-x) = \sin x

cos(180°x)=cosx\cos (180°-x) = -\cos x

tan(180°x)=tanx\tan (180°-x) = -\tan x

cot(180°x)=cotx\cot (180°-x) = -\cot x

Sum and Difference of Angles

sin(α±β)=sinαcosβ±cosαsinβ\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta

cos(α±β)=sinαcosβcosαsinβ\cos(\alpha \pm \beta) = \sin \alpha \cos \beta \mp \cos \alpha \sin \beta

tan(α±β)=tanα±tanβ1tanαtanβ\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}

Double angles

sin(2x)=2sinxcosx\sin(2x) = 2\sin x \cos x

cos(2x)=cos2xsin2x\cos(2x) = \cos^2 x - \sin^2 x

tan(2x)=2tanx1tan2x\tan(2x) = \frac{2\tan x}{1-\tan^2 x}

Half angles

sin(x2)=±1cos(x)2\sin(\frac{x}{2}) = \pm \sqrt[]{\frac{1-\cos(x)}{2}}

cos(x2)=±1+cos(x)2\cos(\frac{x}{2}) = \pm \sqrt[]{\frac{1+\cos(x)}{2}}

tan(x2)=1cosxsinx\tan(\frac{x}{2}) = \frac{1 - \cos x}{\sin x}

Share: